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TAYLOR’S THEORY OF ATMOSPHERIC TURBULENCE.

(Presented at 8 Physics Department Colloquium, University of Wisconsin,)
By Eric R. MmLer, Meteorologist.
[Dated: 'Weather Bureau, Madison, Wis., Nov. 13, 1910.]

A theory of atmospheric turbulence, verified by nu-
merous quantitative experiments, has been developed in
three papers contributed to the Royal Society since 1914,
by G. L. Taylor, Schuster reader in meteorology in the
University of London in 1914, but since then an officer
in the meteorological service of the British Army.

Taylor regards turbulence as made up of eddies and
considers an eddy as air that moves from a stratum
where it has the same temperature, humidity, and mo-
mentum as its surroundings to another stratum, with
which it mixes. He makes no effort to separate kinetic
and thermal turbulence. He does not, indeed, study
individual eddies, although bhe makes use of such studies
by Dines, but his work deals with the effects of tur-
bulence in vertically transferring heat, humidity, and
momentum. He neglects the effect of radiation in trans-
ferring heat from stratum to stratum, not only in dealing
with observations at sea off Newfoundland, where cloudi-
ness perhaps justified the assumption, but also in dealin
with average conditions over Paris. His ideas an
methods will perhaps be understood from the following
summary of his papers:

In his first paper, ‘‘Eddy Motion in the Atmosphere,”
(Philosophical Transactions, volume 215, 1915, pages 1-26)
Taylor arrives, from consideration of the transference of
heat across a large horizontal surface at height 2, at the
expression

00 wddW
_b—t=u2 03 m

for the propagation of heat by means of eddies, in which
0(z, t) is the average potential temperature of the air in
the layer at height z at time £ w is defined by the
relation 1wd=average value of w(z—z,) over a hori-
zontal plane, w being the vertical component of the
velocity of the air, d the average height through which
an eddy moves from a layer in which 1t was at the same
temperature as its surroundings to the layer with which
it mixes. 3Wd roughly represents the average vertical
velocity of the air in places where it is moving upward.
The divisor 2 is inserted because the air at any given
point is equally likely to be in any portion of the path
of an eddy, so that the average value of z~z, should be
a.p&)‘i'loximately equal to 3(d).

e similarity of equation (1) to the equation for the
propagation of heat in a substance of conductivity «,
specific heat s and density p, viz:
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suggests that potential temperature is transmitted up-
ward through the atmosphere by means of eddies in the
same wa; that temperature is transmitted in a sub-
stance of conductivity x. The atmosghere may be
assumed, then, to have an eddy conductivity, pro-

vided X =2
oo .

The upward propagation of a bend (or inversion) in
the temperature-height curve, due to the passage of air
across the shar 1{ defined boundary between the warm
waters of the (Euf Stream, and the cold Labrador Cur-
rent, over the Grand Banks of Newfoundland, is the

first phenomenon employed by Taylor for the evalua-
tion of the coeflicient 4wd. The height of the bend was
ascertained by Taylor by kite flights from the deck of
the ice-scout steamer Scoite in the summer of 1913.
The time required for the propagation of the bend to its
observed altitude was determined by tracing the air
back along its trajectory to the boundary between the
warm and cold water. The trajectory was obtained b
the procedure developed by Shaw and Lempfert in their
‘“Life History of Surface Air Currents’’ applied to data
of wind velocity and direction reported by passing
English, German, and Dutch steamers. The tempera-
ture of the water was obtained from the weekly charts
of sea-surface temperature published by the Meteoro-
logical Office. An expression for the rate at which such
a bend in the tem erature-height curve is propagated
upward is obtained by integration of equation (1) for
the conditions of the observation. Taylor's solution of
this problem gives the relation
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where z is the ohserved height of the bend in the tem-
perature-height curve, ¢ the mterval between the sudden
change in the rate of change of surface temperature
along the air's path, and the time of measurement of
the altitude of the inversion.

The following table gives the data and results of
seven determinations:

TasLE 1.
Av?r
3wd win
Date of observation. z U C.G.S. %’“
meters.| hours. | ynits ( 5 oer:“'
scale).
e T ) P 270 15 [ 3.4 XI10® 8.3
July 17,1913, ... 140 24 57X108 2.0
July 25, 1913. ... 610 168 L5 X103 2.0-3.0
July 28, 1913. ... 170 15 L3 X108 2.2
Aug. 2, 1918 ... iaiiiiiiiiiseieniiienaes 200 11 2.5 X109 3.0
Aug. 4, 1913 (two bends in teraperature-height ( 370 38 ] 2.6 X108 2.5
CUIVE) . .ouon.iemaccarcennrecuarsnsnnorennnsas 770 120 3.4 X108 3.1

It is to be expected that the turbulence will depend
upon the wind velocity, hence it is not surprising to
find that on July 17 and 29, when the wind force was
about 2, the values of 4@ d are very much lower than
on May 3, and August 2 and 4, when the wind force
was about 3. The fact that the figures are so consistent,
although ¢ varies from 11 hours to 7 d:ﬁrs, and z from
140 meters to 770 meters, indicates that the eddy motion
does not diminish to afy great extent in the first 770
meters above the surface.

The humidity-height curves obtained from the kite
flights from the deck of the Scotia show bends at the
same heights as the bends in the temperature curves,
showing that changes in the amount of water vapor in
the atmosphere are propagated upward in the same
way as changes in temperature. This is to be expected,
for it is evident that the reasoning which was used to
deduce equation (1) would serve equally well to deduce

. Om _wdo*m ]
an equation 5= =—%555 for the propagation of water

vapor into the atmosphere.
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In dealing with the upward propagation of momentum
by eddy motion it is necessary to take into account
tge horizontal components of eddy motion, because the
eddy can gain or lose velocity owing to the existence
of local variations in pressure over a horizontal plane.
Such variations are known to exist: they are, in fact, a
necessary factor in the production of disturbed motion.
Taylor has been unable to solve the problem for motion
in three dimensions, but for motions in the z, 2, plane,
limiting the analysis to incompressible fluids, he finds
that, as before, in the case of the eddy conduction of
heat, the average value of w’ (2—z,) can be expressed
in the form &(Eg) where d is the average height through
which an eddy moves before mixing with its surround-
ings, and @ roughly represents prl’)..e average vertical
vejocity in places where w’ is positive. He finds that
the effect of the disturbance in reducing the z-momentum
is the same as that of a viscosity equal to pX average
value of w’ (z-2,), if the motion had not been disturbed.
If the same relations hold for three-dimensional motion,

then there is a relation ;:‘;'-‘- :—:=1:('a_ud) between « the

ed%y conductivity and u the eddy viscosity. =~

aylor next analyzes the effects of eddy viscosity in
preventing the wind from attaining the velocity and
direction expected on account of the pressure distribu-
tion. The most interesting results of this part of his
work are the derivation of an expression for the ratio
of the surface wind velocity to the gradient velocity
differing essentially from that of Guldberg and Mohn:

Q./Q6 =cos a—sin & (Taylor)
Qs/Qa =cos a (Guldberg and Mohn)

and the analytical proof of the fact discovered empiri-
cally by Dobson, that the gradient direction is not
attained until a height (800 meters) is reached that is
more than twice the height (300 meters) at which the
gradient velocity is first attained. Taylor's analysis
also indicates that above the height at which the gra-
dient direction is attained the wind goes on veering
slightly up to a certain height, when it returns again
to the gradient direction at a height slightly less than
twice the height at which it first attained it. These
results of theory are shown to agree closely with the
results of observation by Dobson with pilot balloons
at the Central Flying School at Upavon, on Salishury
Plain, and with observations by J. S. Dines, while the
values of « calculated from Guldberg and Mohn's equa-
tion differ by 30° or more from the observed deflection
of the surface wind from the gradient wind, and the
gradient direction would be attained at the same level
as the gradient velocity according to the theory of
Guldberg and Mohn. By Taylor's theory the ratio of
the height at which the wind direction first becomes the
same as the gradient direction H, to the height H, at
which the wind velocity first attains the gradient

velocity varies with the deflection of the surface wind
from the gradient wind, thus: .
a ‘ﬁ:
0 degrees. i eieiiciaateaieacaaaan 3.0
10 degrees. «.cuen it iaccea e 2
20degrees. . uunce e ieaieaceeiiiiaaaieaaa. 2.6
B0 dOBrees. cunn et ia e eaaaaae. 24
45 degroes. cuuenmeniiiii ittt nae e araaaaas 2.2

In Dobson’s observations the value of -g‘- averaged
2

2.66, and of a 20°, a remarkable coincidence of theory
and observation, a coincidence that indicates that eddy
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motion does not diminish much in the first 900 meters,
in the case of strong winds.
The author derives the following relation between H,
and the eddy viscosity, for a=20°
#  HPwsin ) @)
P (27)
where w is the angular velocity of the earth 0.000073
and for the regions of observation in the south o
England, and the Bank of Newfoundland sin A=0.77.

Hence for these regions L; =H32X0.77X 10,
On land in the case of strong winds H,=900 meters,
hence ’;‘ = 62X10%in C. G. S. units.

For moderate winds H, =800 meters, and L; =50X10%,

for light winds H, =600 meters, and ‘; =28 X 10°,

At sea, assuming that the wind had reached the gradient
velocity when it had practically stopped veering with
increasing height, H, lay between 100 and 300 meters,

so that —’; lay between 0.77Xx10° and 6.9Xx10% values

of the same order as those of the values of p% in Table 1,

tending to confirm the theoretical deduction that pia=£ .

P
The author employs the relation £ =4 d to determine

from observations by J. S. Dines, the size of eddies.
In the case taken the average wind velocity was 7 meters
per second, the average deviation from the mean ver-
tical velocity 25 cm. per second. d, which is rather less
than the average diameter of an eddy, comes out as 40
meters. Since the wind velocity was 7 meters per sec-
ond, or 420 meters per minute, it is evident that rather
less than ten eddies would pass a given spot in a minute.
Examination of Mr. Dines’ record shows about six peaks
per minute on the curve representing vertical velocity,
showing that actual observations of eddy motion are n
harmony with the assumptions on which the author’s
theory is based.

The pa})er closes with a note on the stability of laminar
motion of an inviscid fluid. Interest in this question
arises from the fundamental disagreement of the con-
clusion of Reynolds, that the more necarly inviseid the
fluid the more unstable it is likely to be, with that of
Rayleigh, that instability is impossible when the fluid
is quite inviscid. Defining as unstable, motion in which
the average value of the square of the distance of any
portion of the fluid from the layer out of which the dis-
turbance has removed it, increases with time, the author
arrives at the conclusion that the discrepancy between
Rayleigh’s and Reynolds’s work arises from the assump-
tion. of perfect slipping at the boundaries in Rayleigh’s
work, while the complete absence of slipping is assumed
in Reynolds’s work.

In his second paper, Taylor! invokes the aid of the
frinciple of dynamic similarity in testing his theory.

n this case it is considered that the tangential force
exerted by the wind as it blows over a large tract of
land is equal to the skin friction on a similar small sur-
face when subjected to the action of the very high wind
which would corx-esFond to the same value of I V/v (where
! represents the linear dimension of the system, V
the velocity of the fluid, and » the kinematic velocity).

! Taylor, @. I. ““Skin [riction of the Wind on the Earth’s Surface.” Proe. Roy. Soe,
Ber. A, vol. 92, pp. 196-109,
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The trees and houses on the tract of land reduce to the
mere roughness on the plate.

For the purpose of comparison the skin friction of
the wind is expressed in the form

F=xpQ2 (4)

Q, being the wind velocity near the surface, p the dens-
ity of the air, and « the constant of skin friction.

The highest values of IV/y obtained by Stanton at
the National Physical Laboratory, working with a fluid
flowing through a pigc, are expressed by the formula
F=0.004 pV? where V is the velocity of the fluid near
the wall, p is the density of the fiuid, and .004 is the
value of the constant «.

From the equations in his paper on Eddy Motion,
Taylor obtains the following expression for x in the
atmosphere

where the symbols have the same meaning as before.
Substituting in this equation the data obtained by Dob-
son the following values of «x are found:

> ' a b: Qs Q *
!
Meters. | cmjsee. | cm/sec,
Light winds.......... 28 X 108 13° 600 460 330 0.0023
Moderate winds.......|] 50 X 108 21i° 800 910 590 0.0032
Strong winds......... 62 X 103 20 900 1,560 950 0.0022

It is concluded (1) that x does not appear to increase or
decrease with wind velocity, a threefold increase in
velocity corresponding to a ninefold increase in skin
friction. It appears therefore that the skin friction on the
earth’s surface is proportional to the square of the wind
velocity: (2) Since the values of the skin friction coefli-
cient in the atmosphere, 0.002 to 0.003, are of the same
order, but slightly smaller than the values found in the
laboratory, 0.004, although the scale of the two phe-
nomena differs in the ratio 100,000 to 1, it is evident
that the same law of skin friction applies to the friction of
the atmosphere on the ground as to small flat plates and
pipes. The ratio of the velocity of the fluid near the
wall in a pipe to the velocity in the middle, 0.6, is com-
parable to the ratio of wind velocity near the ground to
the gradient wind, which is 0.7 for light winds, 0.6 for
strong winds.

A third paper by Taylor deals with the evidence
afforded by the daily variation of temperature at various
heights on the Eiffel Tower as to the transference of
heat by turbulence, and with the relation of turbulence
to the daily variation in wind velocity at various heights.

In this paper the power possessed by the atmosphere
in virtue of its turbulence of transmitting heat and
momentum is represented by the symbol K, which is
stated to be roughly equal to the expression 3%l that
appeared in the first paper.

'he temperature observations on the Eiffel Tower were
made during the five years 1890-1894, at altitudes of 123,
197, and 302 meters above ground. Observations at 18
meters are also available from the station on the terrace
of the Bureau Météorologique. For the purpose of
simplifying the computation the curves of diurnal march
of temperature are replaced by the true sine curves which
most nearly represent the real curves. Solution of the
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equation for the convection of heat by turbulence gives

the relation
)
T\log, B, —log, B,

where R, and R, are the ranges at two heights z, and z,,
which differ by an amount 4, while T is the period of
daily variation, 24 hours or 86,400 seconds.

The mean values of K between various heights are
shown in the following table:

1 2 8 4
Month. 18 to 302 | 123 to 322 | 197 to 302 | 18 to 123
melers. meters. meters. meters.
January . coo i e 4.3X101 | 2.9X101] 2.7X104 11x104¢
February..ooneiiieiniiiiiiiaiaeans fi. 4 4.1 1.6 20
Mareh.... 10.5 8.3 7.7 24
April 10.2 10.5 8.2 14
May. 12.9 14.4 16.7 11
June.. 18.3 24.4 28.8 12
July .t m.7 23.4 30.1 13
Ausust...ooeiiii i 14.6 13.1 19.6 18
September... 8.0 7.2 7.5 10
OCONCT .« eaeetciiieciicecaaanaaaas n9 4.9 53 9
November............aaalllll 5.4 3.2 2.5 18
December. . vovnuneiiniceneecnennns 6.5 4.4 2.8 15
Meall....coreeiieemniaiaaniacennanns UL 1> T e

It will be seen from the table that the turbulence
appears to decrease with height in winter, and to increase
in summer. This is explained by reference to the ver-
tical temperature gradient of the two seasons. The
mean temperature gradient up to 300 meters is consid-
erably less than the adiabatic gradient in winter, and
the numberof occasions when the adiabatic gradient is com-
Earatively small. Such agradient,less than theadiabatic,

as a tendency to prevent the spontaneous formation of
turbulence, and to suppress it when formed by outside
agencies, such as obstacles on the ground. In summer
the mean temperature gradient in the first 300 meters is
much more nearly adiabatic, and the number of occa-
sions when it reaches the adiabatic gradient is large.
A gradient equal to the adiabatic has a tendency to
encourage the spontaneous formation of turbulence. An
increase 1n the value of K with height in summer is there-
fore to be expected because X is roughly proportional to
the eddy component of turbulent velocity and to the
diameters of the eddies.

The values of K near the ground are shown in column 4.
These values are less accurate because the method used
in deducing K is most liable to error in this case, where
the temperature variations are large, and they conse-

uently vary in an apparently haphazard way, yet they
show no indication of the annual march so clearly exhib-
ited in all the other columns. The temperature gradient
is thought therefore to have little effect on the turbu-
lence in this stratum, which is governed more by the
nature of the ground, and by the wind velocity which
shows no marked annual march at Paris.

The change in wind direction between the top and
bottom_of the Eiffel Tower has already been used by
Dr. F. Akerblom to find the viscosity of the atmosphere
due to turbulence. This quantity, which is of course
equal to A/p was found to be about 85 C. G. S. units in
winter, and 115 in summer, a difference in the same
sense, but considerably less in amount than that indi-
cated by column 1 in the foregoing table. The mean
value of K/p is given by Dr. AT{erb om as 95 C. G. S.
units. Taking the density of the air, p, as 0.00125, the
value of XA from wind velocity measurements comes out
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7.6 X10%, which is comparable with the value of
5x10* found by Taylor from wind velocity measure-
ments over Salisbury Plain, where the turbulence would
be expected from the nature of the ground to be less than
over Paris. The agreement between these values and
the value of 10X 10* from the temperatures observed
on Eiffel Tower is quite as good as could be expected,
considering the approximations in the calculations, and
affords satisfactory confirmation of the theory that
momentum and heat are transmitted by the same agency,
and that the behavior of the lower atmosphere in trans-
mitting heat can be calculated from observations of the
retardation of the lower layers of the earth’s atmosphere
by the friction of the ground. P

The remainder of the paper is devoted to the Interpre-
tation of the low-level reversal in the type of diurnal
march of wind velocity recently brought to light by
Hellmann’s observations.?

The complementary types of diurnal march of wind
velocity (1) with a maximum in the middle of the day,
observed near the ground, and (2) with a minimum in
the middle of the aay, on mountains, are well known.
Hellmann’s observations with anemometers at 2, 16, and
32 meters above the ground show the upper-air type
apEroa.ching near enough to the ground when the wind is
light to give maxima in the middle of the night at 16 and
32 meters. At 16 meters the maxima of midday and
midnight are about equal, at 32 meters the night maxi-
mum 1s greater than the day maximum. In strong wind
the march is characterized by a midday maximum, and
midnight minimum at all of the anemometers.

The Espy-Képpen theory according to which both types
of daily variation are the results of midday convectional
ascending currents, the circulation of which carry the more
stagnant air up from the ground to reduce the velocity of
the higher layers, and the faster-moving upper wind
down to the ground to increase the velocity of the sur-
face wind, f ﬁs to account for Hellmann’s observations,
because it leads to the conclusion that the vertical cur-
rents due to the heating of the ground must extend to a
much greater height in strong winds than they do in
light winds.

The theory of turbulence, involving frictional as well as
convectional interchange of air at different levels affords
a satisfactory quantitative explanation of the phenomena
observed by ﬁellmann. In the absence of determina-
tions of the diurnal variation of K, it is necessary to
estimate what this would be from the annual variation of
Kshown by the Eiffel Tower observations. Kis assumed
to vary continuously from a maximum at midday to a
minimum at midnight, in such a way that the corre-
sponding values of the angle « between the directions of
the surface wirid and the gradient wind vary through the
entirely probable range from 10° at midday to 30° at
midnight. The velocities are then taken off a Fraphic
representation of the vertical distribution of wind
velocity correspondinF to a series of values of . Curves?®
obtained in this way for a series of arbitrary heights agree
exceedingly well with the march actually observed by
Dr. Hellmann.

The data obtained in various ways as to the value of
K are used to estimate the limits to which the ground
gpe of daily march of wind velocity is likely to extend,

e results being given in the following table:

® Uber die Bewegung der Luft in den untersten Schichten der Atmosphiire. Met
Zelt, Jan. 1913, vol. 32, Pp. 1-186.
3 Given in the original paper, but not reproduced here.
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At midday. At midnight. | Height ;

at which

Gradient maxima

veloCl .
m. p. .9? mld%‘y
K @ K a and

midnight

are equal.
Summer. 40X 104 12 Mm"'oo

2 ummer..

Strong winds.... ‘S’Vi““‘r---. 13.6 135108 17 6X103 28 50
Light winds......{pmmer. - i soff AXIC 4 vaor| 2 2

These theoretical conclusions ee with Dr. Hell-
mann’s observations, in which the reversal in light
winds occurred at about 16 meters in winter and about
32 meters in summer. The reversal in strong winds was
above all three anemometers, and also above the ane-
mometer 41 meters above the ground at the meteoro-
logical observatory at Potsdam.

Taylor’s coeflicient of eddy conductivity appears to
be an imEortant meteorological constant. Its applica-
bility in the dynamics of the lower atmosphere is obvious.
That it may be of great practical importance is indicated
by the successful elucidation of Hellmann'’s observations,
which are evidently closely related to the phenomenon
of the nocturnal inversion of temperature. Observations
of it may become essential to the successful forecasting
of agricultural frosts.

ATMOSPHERIC STIRRING MEASURED BY
PRECIPITATION.

By Lewis F. RicHARDSON.!

[Abstracted from Proceedings of the Roval Soclety, Series A, vol. 93, No. 674,
pp. 9-18, 1019.]

Gentle mixing of a definite portion of air does not
alter the total amount of water in it; any increase in
the amount must come from water flowing in over the
sides of that portion of air. Taking a large horizontal
layer of air, and defining upward flux as the ratio of
amount of water rising across a large horizontal surface
in unit time to the area of the surfuce, we can define a
coeflicient ¢, such that

— %
= cah’

where ¢ is upward flux, 4 is height, z is amount of water
per unit mass of air. When a definite portion of air is
removed from one level to another, the total amount of
water associated with it does not, of course, change, and
hence z does not change, and ¢ is zero when 0x/0h is
zero. It is then very easy to show that

5i=25(to0)

is the equation for diffusion, where p is pressure, and £
is equal to g°pc, p being density; also that

-k oz

AERNEPYY 3
£ being the stirring coefficient, or measure of degree of
atmospheric turbulence. Since on the average the water-

content of the atmosphere is not increasing, the water
which descends as precipitation must have been stirred

1Cf, Sclence Abstracts, Nov. 29, 1619, pp. 502-503.



